Abstract
Analyses of travel times and amplitudes of crosshole georadar data provide estimates of the electromagnetic velocity and attenuation of the probed media. Whereas inversions of travel times are well established and robust, ray-based inversions of amplitudes depend critically on the complex directive properties of the georadar antennae. We investigate the variations of radiation patterns in the presence of water-filled boreholes and/or changes of electrical material properties in the vicinity of the transmitters or receivers. To assess the implications of such complicating factors for ray-based georadar amplitude tomography, we generate crosshole georadar data for a suite of canonical models using a finite difference time domain (FDTD) solution of Maxwell's equations in cylindrical coordinates. The emitting dipole-type antenna is approximated by an infinitesimal vertical electric dipole, whereas a corresponding receiving antenna is emulated by recording the vertical component of the transmitted electric field. Inversions of the amplitudes of these synthetic data demonstrate that the presence of water-filled boreholes as well as changes in the material properties along the boreholes may cause substantial artifacts in the estimated attenuation structure. Furthermore, our results indicate that ray-based amplitude tomography of crosshole georadar data is unable to constrain absolute values of attenuation. Despite these inherent limitations, the method is surprisingly robust at detecting and constraining relative changes in attenuation. In particular, we find the method to be highly effective for locating conductivity contrasts that are not associated with corresponding changes in dielectric permittivity, and hence, cannot be located by travel time tomography alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.