Abstract

The present paper deals with a new efficient approach in order to assess the simulation of scattered fields from arbitrary metallic objects. The basic idea is to combine a ray tracing algorithm with the principles of physical optics (PO) and the physical theory of diffraction (PTD). The ray tracing algorithm stochastically launches discrete rays and uses a ray density normalization. In order to perform simulations at finite objects the PO/PTD formulation is required. Thus, fast intersection routines can be implemented, while the ray density formulation reduces the PO and PTD integrals to a pure sum of ray contributions. Simulation results obtained with this model are verified by comparison with both exact simulations using a method of moments (MoM) code and measurement results, proving an excellent accuracy and fast computation even at complex objects. With this asymptotic approach, scattering properties of large objects that are too complex for exact methods can be analyzed with rather moderate computation efforts. Typical applications include the simulation of low observability (LO) designs as well as the generation of databases for identifying unknown aircraft by their radar signature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.