Abstract
SummaryThis paper describes the use of domain decomposition methods for accelerating wave physics simulation. Numerical wave‐based methods provide more accurate simulation than geometrical methods, but at a higher computation cost as well. In the context of virtual reality, the quality of the results is estimated according to human perception, what makes geometrical methods an interesting approach for achieving real‐time physically‐based rendering. Here, we investigate a geometrical method based on both beams and rays tracing, which we enhance by two levels of parallel processing. Techniques from domain decomposition methods are coupled with classical parallel computing on both shared and distributed memory. Both optic and acoustic renderings are experimented to evaluate the acceleration impact of the domain decomposition scheme. Speedup measurements clearly show the efficiency of using domain decomposition methods for real‐time simulation of wave physics. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.