Abstract

The conceptual design of a very large floating structure (VLFS) requires a convenient computer code for predicting hydroelastic behavior of it. The code should not be time consuming, but it should be flexible for all environmental conditions. In order to meet the needs, we apply the ray theory for predicting hydroelastic behavior of a mat-like VLFS. The hydroelastic behavior of the VLFS is treated as wave propagation in the platform. The theory itself is based on the classical ray theory, which yields a quick computational scheme. The parabolic approximation is applied to smoothing the discontinuous deformation obtained by the classical ray theory. An experimental technique in a small wave tank with a mini scale model has been developed. Through comparisons with the mini scale experiment and other data found in literatures, it is confirmed that the ray theory has enough accuracy for the conceptual design, unless the assumptions of the ray theory are completely violated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.