Abstract

The ray statement of the inverse problem of determining three unknown variable coefficients in the linear acoustic equation is studied. These coefficients are assumed to differ from given constants only inside some bounded domain. There are point pulse sources and acoustic receivers on the boundary of this domain. Acoustic signals are measured by a receiver near the moment of time at which the signal from a source arrives at the receiver. It is shown that this information makes it possible to uniquely determine all the three desired coefficients. Algorithmically, the original inverse problem splits into three subproblems solved successively. One of them is a well-known inverse kinematic problem (of determining the speed of sound), while the other two lead to the same integral geometry problem for a family of geodesic lines determined by the speed of sound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.