Abstract

The problem of optical ray propagation in a nonuniform random half-plane lattice is considered. An external source radiates a planar monochromatic wave impinging at an angle theta on a half-plane random grid where each cell can be independently occupied with probability q(j)=1-p(j),j being the row index. The wave undergoes specular reflections on the occupied cells, and the probability of penetrating up to level k inside the lattice is analytically estimated. Numerical experiments validate the proposed approach and show improvement upon previous results that appeared in the literature. Applications are in the field of remote sensing and communications, where estimation of the penetration of electromagnetic waves in disordered media is of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.