Abstract

We introduce flows of branching processes with competition, which describe the evolution of general continuous state branching populations in which interactions between individuals give rise to a negative density dependence term. This generalizes the logistic branching processes studied by Lambert (Ann Appl Probab 15(2):1506–1535, 2005). Following the approach developed by Dawson and Li (Ann Probab 40(2):813–857, 2012), we first construct such processes as the solutions of certain flow of stochastic differential equations. We then propose a novel genealogical description for branching processes with competition based on interactive pruning of Levy-trees, and establish a Ray–Knight representation result for these processes in terms of the local times of suitably pruned forests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.