Abstract
AbstractThe γ-ray binaries LS 5039 and LS I +61◦303 have been detected by Cerenkov telescopes at TeV energies, exhibiting periodic behavior correlated with the orbital period. These γ-ray binary systems have also been recently detected by the Fermi Gamma-ray Telescope at GeV energies, and combination of GeV and TeV observations are providing both, expected and surprising results. We summarize these results, also considering the multi-frequency scenario, from the perspective of pulsar systems. We discuss similarities and differences of models in which pulsar wind/star wind shocks, or pulsar wind zone processes lead to particles accelerated enough to emit TeV photons. We discuss in detail the caveats of the current observations for detecting either accretion lines or pulsations from these objects.We also comment on the possibility for understanding the GeV to TeV emission from these binaries with a 2-components contribution to their spectrum. We show that it would be possible to accommodate both, normal pulsar emission and GeV / TeV fluxes that vary with orbital phase.We point out several aspects of this idea that are subject to test with data being currently taken.KeywordsBlack HoleNeutron StarRadio EmissionStellar WindCompact ObjectThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.