Abstract
Gamma-ray beams with a large angular momentum may affect astrophysical phenomena, which calls for appropriate earth-based experimental investigations. For this purpose, we investigate the generation of well-collimated γ-ray beams with a very large orbital angular momentum using nonlinear Compton scattering of a strong laser pulse of twisted photons at ultrarelativistic electrons. Angular momentum conservation among absorbed laser photons, quantum radiation, and electrons is numerically demonstrated in the quantum radiation-dominated regime. We point out that the angular momentum of the absorbed laser photons is not solely transferred to the emitted γ photons, but due to radiation reaction shared between the γ photons and interacting electrons. The efficiency of the angular momentum transfer is optimized with respect to the laser and electron beam parameters. The accompanying process of electron-positron pair production is furthermore shown to enhance the orbital angular momentum gained by the γ-ray beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.