Abstract
The Ince-Gauss beams, separable in elliptic coordinates, are studied through a ray-optical approach. Their ray structure can be represented over a Poincaré sphere by generalized Viviani curves (intersections of a cylinder and a sphere). This representation shows two topologically different regimes, in which the curve is composed of one or two loops. The overall beam shape is described by the ray caustics that delimit the beams’ bright regions. These caustics are inferred from the generalized Viviani curve through a geometric procedure that reveals connections with other physical systems and geometrical constructions. Depending on the regime, the caustics are composed either of two confocal ellipses or of segments of an ellipse and a hyperbola that are confocal. The weighting of the rays is shown to follow the two-mode meanfield Gross–Pitaevskii equations, which can be mapped to the equation of a simple pendulum. Finally, it is shown that the wave field can be accurately estimated from the ray description.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.