Abstract

Trajectories carry rich motion cues and thus have been leveraged to many high-level computer vision tasks. Due to the easy implementation of simple trackers, most previous work on trajectory-based applications utilizes raw tracking outputs without explicitly considering tracking errors. Reliable trajectories are prerequisite for modeling and recognizing high-level behaviors. Therefore, this paper tackles such problems by rectifying raw trajectories, which aims to post-process existing trajectories. Our approach firstly splits them into short tracks, and then infers identity ambiguity to remove unqualified detection responses. At last, short tracks are stitched via maximum bipartite graph matching. This postprocessing is completely scene-free. Results of trajectory rectification and their benefits are both evaluated on two challenging datasets. Results demonstrate that rectified trajectories are conducive to high-level tasks and the proposed approach is also competitive with state-of-the-art multi-target tracking methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.