Abstract

Raw palygorskite (Pal) samples went under acid (H-Pal), NaCl (Na-Pal), and CaCl2 treatment (Ca-Pal) in order to be examined as ammonium (NH4 + ) sorbents from aqueous solutions. The samples were characterized by XRD and FT-IR techniques to examine potential structural differences after modifications, and batch kinetic experiment series were applied to determine the optimal conditions for NH4 + removal. According to thermodynamic analysis, the removal reaction for sodium- and calcium-treated samples was endothermic (ΔΗ0 >0, 1.65kJ/mol and 24.66kJ/mol, respectively), in contrast with the exothermic reactions of raw and acidic-treated palygorskite samples (ΔΗ0 <0, -37.18kJ/mol and -27.56kJ/mol respectively). Moreover, each sample presented a different order of sorbed ions preference, whereas the strong affinity for Ca2+ sorption was common in all cases since the NH4 + removal inhibited. Nevertheless, a similar pattern was followed for raw and modified samples at isotherm study, rendering the linear form of Freundlich isotherm to express better the NH4 + sorption on palygorskite sample, indicating that it is a heterogeneous procedure. In all cases, the NH4 + maximum uptake was within 15min using 8g/L of each sorbent, especially for the Na-Pal sample, which could reach almost 100% removal of low concentration NH4 + . PRACTITIONER POINTS: Modified palygorskite samples were tested for NH4 + removal from aqueous solutions. NaCl-treated palygorskite had the higher removal efficiency, which could reach almost 100% removal of low concentration NH4 + . NH4 + maximum uptake was within 15 minutes using 8 g/L of each sorbent. NH4 + adsorption was an endothermic reaction for NaCl- and CaCl2 -treated palygorskite sorbents. NH4 + adsorption was an exothermic reaction for raw and acid-treated palygorskite sorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call