Abstract
Finite volume methods are widely used, in particular because they allow an explicit and local computation of a discrete gradient. This computation is only based on the values of a given scalar field. In this contribution, we wish to achieve the same goal in a mixed finite element context of Petrov–Galerkin type so as to ensure a local computation of the gradient at the interfaces of the elements. The shape functions are the Raviart–Thomas finite elements. Our purpose is to define test functions that are in duality with these shape functions: precisely, the shape and test functions will be asked to satisfy some orthogonality property. This paradigm is addressed for the discrete solution of the Poisson problem. The general theory of Babuška brings necessary and sufficient stability conditions for a Petrov–Galerkin mixed problem to be convergent. In order to ensure stability, we propose specific constraints for the dual test functions. With this choice, we prove that the mixed Petrov–Galerkin scheme is identical to the four point finite volume scheme of Herbin, and to the mass lumping approach developed by Baranger, Maitre and Oudin. Convergence is proven with the usual techniques of mixed finite elements.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.