Abstract

Metastatic tumors present great challenges in diagnosis and treatment. Herein, a proof-of-concept theranostic nanoplatform composed of an Au nanoparticle core and a double-shell of metal-organic framework (MOF) and mesoporous silica (MS) is developed for combating spinal metastasis of lung cancer in an orthotopic model. Two drugs, Alpelisib (BYL719) as an inhibitor and cisplatin as a chemotherapeutic drug, are separately loaded into the double-shell with high loading content. A targeting peptide called dYNH and indocyanine green (ICG) are conjugated onto the outmost MS layer for specifically targeting metastatic tumor cells and enhancing photothermal effect. The resultant Au@MOF@MS-ICG -dYNH-PAA (AMMD) shows enhanced cellular uptake on tumor cells and accumulation at metastatic spinal tumors, as evidenced by fluorescent and photoacoustic imaging. Benefiting from this ultra-high affinity to tumor cells and the photothermal effect of ICG, the dual-drug-loaded AMMD (BCAMMD) modified with ICG exhibits superior therapeutic efficacy on spinal tumors. More importantly, bone destruction, which frequently occurs in bone-related tumors, is effectively suppressed by BYL719 in BCAMMD. Hence, by rationally integrating multiple functions, including excellent targeting ability, dual-drug loading, photothermal therapy, and photoacoustic imaging, the developed all-in-one theranostic nanoplatform provides a useful paradigm of employing nanomedicine to treat metastatic spinal tumors efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call