Abstract

Effective inhibition of bacteria and removal of carcinogenic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are important technical challenges in water purification because most of the traditional filter membranes are prone to being biologically contaminated by bacteria and difficult to filter off PAHs. Herein we present the synthesis and characterization of a novel multifunctional nanocapsule (vesicle) based on a statistical copolymer, poly[[2-hydroxy-3-(naphthalen-1-ylamino)propyl methacrylate]-stat-[2-(tert-butylamino)ethyl methacrylate]] [P(HNA23-stat-TA20)], which can be easily synthesized in one step. The TA moiety is engineered for effective bacterial inhibition, while the HNA moiety is in charge of the capturing of PAHs by π-π stacking. The nanocapsules can effectively inhibit bacteria and quickly reduce the pyrene content in water to an extremely low residual concentration of 5.6 (in 1 min) or 0.56 (in 60 min) parts per billion (ppb). Moreover, this rational engineering principle could be extended by statistically copolymerizing HNA with other functional monomers for designing a range of multifunctional nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.