Abstract

Amorphous MoS3 has been an attractive electrode material for sodium-ion batteries and lithium-sulfur batteries. However, the potassium storage capability of amorphous MoS3 remains unreported. Herein, the construction of hybrid hierarchical microspheres composed of amorphous MoS3 nanosheets dual-confined with TiO2 core, and nitrogen-doped carbon shell layer (denoted as TiO2 @A-MoS3 @NC) via a self-templating method, combined with a low-temperature sulfurization process as a new anode material for potassium-ion batteries (PIBs), is reported. Benefitting from the unique structural merits including unique 1D chain structure, disordered arrangement of atoms and a large number of defects of amorphous MoS3 , more active heterointerfacial sites, effectively mitigated volume change, good electrical contact, and easy K+ ion migration, the TiO2 @A-MoS3 @NC microspheres exhibit excellent potassium-storage performance with high specific capacity, superior rate capability, and cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.