Abstract
The natural product family of fusicoccanes are stabilizers of 14-3-3 mediated protein-protein interactions (PPIs), some of which possess antitumor activity. In this study, the first use of molecular dynamics (MD) to rationally design PPI stabilizers with increased potency is presented. Synthesis of a focused library, with subsequent characterization by fluorescence polarization, mutational studies, and X-ray crystallography confirmed the power of the MD-based design approach, revealing the potential for an additional hydrogen bond with the 14-3-3 protein to lead to significantly increased potency. Additionally, these compounds exert their action in a cellular environment with increased potency. The newly found polar interaction could provide an anchoring point for new small-molecule PPI stabilizers. These results facilitate the development of fusicoccanes towards drugs or tool compounds, as well as allowing the study of the fundamental principles behind PPI stabilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.