Abstract

A 1,2,3-triazole chemosensor containing phenanthrene and phenol moieties (PhTP) was efficiently synthesized via copper (I)-catalyzed azide-alkyne cycloaddition, "click chemistry". PhTP is a dual analyte sensor for fluoride and copper (II) ions in homogeneous medium. Deprotonation of the phenolic OH proton by the fluoride ion is responsible for a change in fluorescence color from blue (PhTP) to yellowish-orange (PhTP-fluoride adduct), while a charge transfer between the triazole nitrogen of the chemosensor and Cu2+ revealed a turn-off fluorescence output. The detection capability of PhTP was analyzed with a series of anions (F-, Cl-, Br-, I-, H2PO4-, ClO4-, OAc-, BF4-) and cations (Fe3+, Fe2+, Cu2+, Ag+, Cr3+, Al3+, Co2+, Ni2+, Cd2+, Zn2+). With anions, competitive fluorescence responses under UV lamp were observed for acetate and dihydrogen phosphate anions, but maximum response from fluoride ion was substantiated from steady state absorption and fluorescence experiments. With cations, PhTP displayed a selective and sensitive recognition towards Cu2+ ion through spectral modulation in absorption spectroscopy and a turn-off fluorescence response. Nuclear magnetic resonance (NMR) spectroscopic titration studies supported the results obtained through photophysical studies and provided evidence for the ion-binding sites on the probe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call