Abstract

Cytochrome c oxidase (CcOX) containing binuclear heme a3-Cu B centre (BNC) mechanises the process of electron transfer in the last phase of cellular respiration. The molecular modelling based structural analysis of CcOX – heme a3-Cu B complex was performed and the disturbance to this complex under cyanide poisoning conditions was investigated. Taking into consideration the results of molecular docking studies, new chemical entities were developed for clipping cyanide from the enzyme and restoring its normal function. It was found that the molecules obtained by combining syringaldehyde, oxindole and chrysin moieties bearing propyl/butyl spacing groups occupy the BNC region and effectively remove cyanide bound to the enzyme. The binding constant of compound 2 with CN– was 2.3 × 105 M−1 and its ED50 for restoring the cyanide bound CcOX activity in 10 min was 16 µM. The compound interacted with CN– over the pH range 5–10. The comparison of the loss of enzymatic activity in the presence of CN– and resumption of enzymatic activity by compound 2 mediated removal of CN– indicated the efficacy of the compound as antidote of cyanide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.