Abstract

Rational designing of electrode materials is of great interest for improving the performance of battery-type supercapacitors. The bimetallic NiCo2S4 (NCS) and CoNi2S4 (CNS) electrode materials have received much attention for supercapacitors due to their rich electrochemical characteristics. However, the comparative electrochemical performances of NCS and CNS electrodes were never studied for supercapacitor application. In this work, microsphere-like bimetallic NCS and CNS structures were synthesized via a facile one-step hydrothermal method by controlling the molar ratio of Ni and Co precursors. The physico-chemical results confirmed that microsphere-like structures with cubic spinel-type NCS and CNS materials were successfully fabricated by this method. When tested as the supercapacitor electrode materials, both NCS and CNS electrodes exhibited battery-type behavior in a three-electrode configuration with outstanding electrochemical performances such as specific capacity, rate performance and cycle stability. Impressively, the CNS electrode delivered a high specific capacity of 430.1 C g-1 at 1 A g-1, which is higher than 345.9 C g-1 of the NCS electrode. Furthermore, the NCS and CNS electrodes showed a decent cycling stability with 75.70 and 84.70% capacity retention after 10,000 cycles. Benefiting from the electrochemical advantage of CNS microspheres, we fabricated a hybrid supercapacitor (HSC) device based on CNS microspheres (positive electrode) and activated carbon (AC, negative electrode), which is named as CNS//AC. The assembled CNS//AC HSC device showed a large energy density of 41.98 Wh kg-1 at a power density of 800.04 W kg-1 and displayed a remarkable cycling stability with a capacity retention of 91.79% after 15,000 cycles. These excellent electrochemical performances demonstrate that both bimetallic NCS and CNS microspheres may provide potential electrode materials for high performance battery-type supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.