Abstract

Rational design of highly efficient multi-heterojunction photocatalyst with separated charge transfer channels still remains a challenge. Herein, a novel La2Ti2O7/g-C3N4/AgI photocatalyst is constructed via a facile electrostatic self-assembly plus selective deposition–precipitation method. The results demonstrate that the spatially isolated La2Ti2O7 and AgI are both decorated tightly on g-C3N4 nanosheets and form separated heterojunctions, which provide much more separated charge transfer channels and surface reaction sites. Therefore, the samples exhibit remarkably boosted photodegradation performance for sulfamethoxazole (SMZ). DFT results indicate that the atoms with the most positive and negative value of condensed dual descriptors (CDD) are the mostly vulnerable to reactive species. Aromatic amine oxidation, the cleavage of sulfonamide bond and hydroxylation of aromatic rings are mainly SMZ degradation pathways. This study provides a new insight for the guideline of rational design/development of new multicomponent photocatalysts for potential application on treatment of emerging pollutants in waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.