Abstract

A key issue in attaining highly efficient supported catalysts for the hydrogenation of unsaturated polymers arises from the entanglement between the number of exposed active sites and the severe internal mass transfer limitation caused by their large molecular size. Hence, an ultrasmall N-doped carbon nanosphere with Ni NPs and CQDs embedded (Ni-CQDs/NCNs) was reasonably constructed by low-temperature (400 °C) pyrolysis of the precursor CQDs@Nano-Ni-ZIFs. As-prepared Ni-CQDs/NCNs exhibited superior catalytic activity to a commercial 10% Pd/C catalyst in petroleum resin hydrogenation under a low temperature of 150 °C, which is 100 and 60 °C lower than that of previously reported Ni- and Pd-based catalysts, respectively. The excellent catalytic activity of Ni-CQDs/NCNs mainly contributes to the following factors: first, its ultrasmall structure (ca. 50 nm) eliminates the internal mass transfer limitation; second, the CQDs and N-doped carbon matrix stabilize the 53.1 wt % high-loading Ni NPs at a small size of 5.6 nm, providing abundant active sites; and third, the electronic regulation of N-doped carbon enhances the intrinsic activity of Ni, which was revealed by the experiments and DFT calculations. Besides, Ni-CQDs/NCNs exhibits long-term stability and appreciable magnetic separation performance, making it a considerable candidate for industrial application. This work not only offers a facile approach to prepare nano MOF-derived catalysts but also gives helpful instruction to the rational design of heterogeneous catalysts for the reaction involving large molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.