Abstract

The perhydrolysis reaction in hydrolases is an important example of catalytic promiscuity and has many potential industrial applications. The mechanisms of perhydrolase activity of a subtilisin Carlsberg mutant and of an aryl-esterase mutant have been investigated using classical molecular dynamics simulations of the second tetrahedral intermediate (TI) state. The simulations demonstrated that hydrogen bonding between the second TI of the perhydrolysis reaction is possible in the mutants but not wild type. The stabilization by hydrogen bonds was specific for the perhydrolysis intermediate and either no hydrogen bonding or only weakened hydrogen bonding to the second TI state of the hydrolysis reaction was observed. Furthermore, a significant hindrance to the formation of the catalytically important hydrogen bond between His64 and Ser221 in the catalytic triad by competing hydrogen bonds was found for the subtilisin mutant but not wild type enzyme in case of the hydrolysis intermediate. The opposite was observed in case of the perhydrolysis intermediate. The result offers a qualitative explanation for the overall reduced hydrolysis activity of the subtilisin mutant. In addition, the simulations also explain qualitatively the perhydrolysis activity of the enzyme variants and may be helpful for designing enzyme mutants with further improved perhydrolysis activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.