Abstract

Simulative builds, typical of the tip-repair procedure, with matching compositions were deposited on an INCONEL 718 substrate using the laser additive manufacturing process. In the as-processed condition, these builds exhibit spatial heterogeneity in microstructure. Electron backscattering diffraction analyses showed highly misoriented grains in the top region of the builds compared to those of the lower region. Hardness maps indicated a 30 pct hardness increase in build regions close to the substrate over those of the top regions. Detailed multiscale characterizations, through scanning electron microscopy, electron backscattered diffraction imaging, high-resolution transmission electron microscopy, and ChemiSTEM, also showed microstructure heterogeneities within the builds in different length scales including interdendritic and interprecipitate regions. These multiscale heterogeneities were correlated to primary solidification, remelting, and solid-state precipitation kinetics of γ″ induced by solute segregation, as well as multiple heating and cooling cycles induced by the laser additive manufacturing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.