Abstract

Streptococcus pneumoniae remains one of the most frequent bacterial causes of morbidity and mortality worldwide. National immunization programs implementing pneumococcal polysaccharide conjugate vaccines (PCVs) have successfully reduced rates of vaccine-type invasive disease and colonization both via direct effects in immunized children and, in some settings, indirect effects in unimmunized individuals. Limitations of the current PCV approach include the emergence of non-vaccine serotypes contributing to carriage and invasive disease in high-PCV coverage settings and the high cost of goods of PCVs which limits their accessibility in developing countries where the burden of disease remains highest. Furthermore, the distribution of serotypes causing disease varies geographically and includes more serotypes than are currently covered in a single PCV formulation. Researchers have long been exploring the potential of genetically conserved non-capsular pneumococcal antigens as vaccine candidates that might overcome such limitations. To better evaluate the rationale of such approaches, an understanding of the mechanisms of immunity to the various phases of pneumococcal infection is of paramount importance. Herein we will review the evolving understanding of both vaccine-induced and naturally acquired immunity to pneumococcal colonization and infection and discuss how this informs current approaches using serotype-independent pneumococcal vaccine candidates. We will then review the alternative vaccine candidates that have been or are currently under evaluation in clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call