Abstract

A bstract . We discuss the foundations of vertex operator algebras and their representations, concentrating on rational vertex operator algebras. We use the Witt-Grothendieck group of conformal field theories as a vehicle to describe results, in particular the connections with modular forms. INTRODUCTION Vertex operator algebras suggest themselves as objects that could play a role in a geometric description of elliptic cohomology and related topics. As linear spaces with lots of symmetry they can participate in K-theoretic type constructions, and many (but not all) vertex operator algebras are endowed with a natural modular form as part of their structure. The incorporation of vertex operator algebras into topology is well under way (e.g. [Bo], [MS], [MSV], [T]), but it seems true to say that the underlying algebraic theory is not well understood by many potential users of the subject. What follows is an attempt to convey some of the basic ideas about vertex operator algebras, in particular the rapidly advancing theory of rational vertex operator algebras. These are the algebras most naturally associated to modular forms, and in the guise of RCFT (rational conformal field theory) they constitute an active area of research in physics ([FMS]) as well as mathematics. For more information and background the reader may refer to the following: [DM4], [FLM], [G], [K1], [KR], [QFS]. Additional references will be mentioned below. In my talk at the Newton Institute I emphasized questions about group actions (orbifold theory) and in particular how one can get information about finite group cohomology (e.g., for the Monster group) by looking at maps of equivariant Witt-Grothendieck groups of vertex operator algebras into group cohomology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call