Abstract
Electric boolean games are compact representations of games where the players have qualitative objectives described by LTL formulae and have limited resources. We study the complexity of several decision problems related to the analysis of rationality in electric boolean games with LTL objectives. In particular, we report that the problem of deciding whether a profile is a Nash equilibrium in an iterated electric boolean game is no harder than in iterated boolean games without resource bounds. We show that it is a PSPACE-complete problem. As a corollary, we obtain that both rational elimination and rational construction of Nash equilibria by a supervising authority are PSPACE-complete problems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.