Abstract
This work describes the first rational targeting of tyrosine residues in a protein binding site by small-molecule covalent probes. Specific tyrosine residues in the active site of the mRNA-decapping scavenger enzyme DcpS were modified using reactive sulfonyl fluoride covalent inhibitors. Structure-based molecular design was used to create an alkyne-tagged probe bearing the sulfonyl fluoride warhead, thus enabling the efficient capture of the protein from a complex proteome. Use of the probe in competition experiments with a diaminoquinazoline DcpS inhibitor permitted the quantification of intracellular target occupancy. As a result, diaminoquinazoline upregulators of survival motor neuron protein that are used for the treatment of spinal muscular atrophy were confirmed as inhibitors of DcpS in human primary cells. This work illustrates the utility of sulfonyl fluoride probes designed to react with specific tyrosine residues of a protein and augments the chemical biology toolkit by these probes uses in target validation and molecular pharmacology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.