Abstract
Developmental silencing of fetal globins serves as both a paradigm of spatiotemporal gene regulation and an opportunity for β-hemoglobinopathy therapeutic intervention. The NuRD chromatin complex participates in γ-globin repression. Here we use pooled CRISPR screening to comprehensively disrupt NuRD protein coding sequences in human adult erythroid precursors. We find essential for fetal hemoglobin (HbF) control a nonredundant subcomplex of NuRD protein family paralogs, whose composition we corroborate by affinity chromatography and proximity labeling mass spectrometry proteomics. Mapping top functional guide RNAs identifies key protein interfaces where in-frame alleles result in loss-of-function due to destabilization or altered function of subunits. We ascertain mutations of CHD4 that dissociate its requirement for cell fitness from HbF repression in both primary human erythroid precursors and transgenic mice. Finally we demonstrate that sequestering CHD4 from NuRD phenocopies these mutations. This work indicates a generalizable approach to discover protein complex features amenable to rational biochemical targeting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.