Abstract

In this work, thiophene moieties (as the crucial functional groups) have been successfully incorporated into the skeleton of metal–organic frameworks (MOFs) by using thienyl-substituted triazole ligands. Reaction of AgCF3SO3 with 3-phenyl-5-(2-thienyl)-1,2,4-triazole (PTTzH) or 3,5-bis(2-thienyl)-1,2,4-triazole (BTTzH) afforded two isostructural MOFs (AgTz-3 and AgTz-4) in gram-scale. AgTz-4 with higher thiophene content showed significantly stronger photocatalytic activity than AgTz-3 with lower thiophene content. Noteworthy, the photodegradation rate constants of AgTz-4 were 0.055 mg·L-1·min-1 for rhodamine B and 0.24 min−1 for salazosulfapyridine, which is comparable or even higher than some MOF-based materials reported in the literature. More importantly, AgTz-4 demonstrated good reusability and stability after four cycles of photodegradation. Our experimental results revealed that the enhanced photodegradation efficiency can be attributed to the increased light absorption capacity and optimized band structure of Ag-MOFs resulting from the introduction of thiophene groups into MOF structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.