Abstract
Radioactive cesium pollution have received considerable attention due to the increasing risks in development of the nuclear power plants in the world. Although various functional porous materials are utilized to adsorb Cs+ ions in water, Prussian blue analogues (PBAs) are an impressive class of candidates because of their super affinity of Cs+ ions. The adsorption ability of the PBAs strongly relate to the mesostructure and interstitial sites. To design a hollow PBA with large number of interstitial sites, the traditional hollowing methods are not suitable owing to the difficulty in processing the specific PBAs with large number of interstitial sites. In this work, we empolyed a rational strategy which was to form a "metal oxide"@"PBA" core-shell structure via coordination replication at first, then utilized a mild etching to remove the metal oxide core, led to hollow PBA finally. The obtained hollow PBAs were of high crystallinity and large number of interstitial sites, showing a super adsorption performance for Cs+ ions (221.6 mg/g) within a short period (10 min).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.