Abstract

In this work, we proposed an effective strategy to prepare nitrogen-doped popcorn-like porous carbons (NPPCs) via ultra-fast carbonization of zeolitic immidazolate frameworks (ZIFs-8), where the ZIFs-8 acted as carbon precursor as well as the template. The obtained NPPCs possess popcorn-like morphology with large specific surface area of 1243[Formula: see text]m2/g, total pore volume of 1.48[Formula: see text]cm3/g and high nitrogen content. Remarkably, the average pore diameter of NPPCs was 4.72[Formula: see text]nm, indicating the presence of amount substantial mesopores. As the electrode of supercapacitor, the NPPCs revealed a relatively high specific capacitance of 610.4[Formula: see text]F/g in KOH (6[Formula: see text]mol/L) at 5[Formula: see text]mV/s. Even the scan rate was increased to 50[Formula: see text]mV/s, an impressive capacity of 424.8[Formula: see text]F/g can be achieved, suggesting good rate capability. Besides, it exhibited outstanding cycling stability with 93% of specific capacitance retention after 10,000 GCD cycles. Moreover, the NPPCs electrode demonstrated high electrochemical performance and stability by designing the coin-type and flexible supercapacitor. The large specific surface area, abundant accessible mesoporosity and novel nanostructure are account for the superior performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call