Abstract

In comparison to the common anatase, rutile and brookite phases, the bronze phase TiO2 (TiO2(B)) is rarely prepared, and obtaining unique TiO2(B) structures, especially those with complex configurations remains a great challenge. This work presents a completely new synthetic approach for fabricating hierarchical nanoporous TiO2(B) assemblies with tailored crystallites and architectures via the reaction between tetrabutyl titanate and normal fatty acids. Three different kinds of normal fatty acids, i.e., pentanoic acid, hexanoic acid, and nonanoic acid were utilized as the sole solvent. After a simple solvothermal treatment, nanoporous TiO2(B) microspheres constructed by [001]-elongated ultrathin nanorods, randomly aggregated ultrafine nanocrystals, and crystallographically oriented nanocrystals were successfully produced separately. Further investigation revealed that the morphology of the hierarchical assemblies could be modified by using foreign substrates to adjust the growth dynamics of TiO2(B) crystals. As a good illustration, by introducing graphene nanosheets into the tetrabutyl titanate-pentanoic acid system, nanosized [001]-elongated-ultrathin-nanorod-constructed nanoporous TiO2(B) assemblies were obtained, which exhibited superior performance as an anode in Li-ion batteries. This work can not only shed new light on TiO2(B) crystallization, but also provide an effective solution for the rational design of complex TiO2(B) micro-/nanoarchitectures for desired applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.