Abstract

We give series expansions for the Barnes multiple zeta functions in terms of rational functions whose numerators are complex-order Bernoulli polynomials, and whose denominators are linear. We also derive corresponding rational expansions for Dirichlet L -functions and multiple log gamma functions in terms of higher order Bernoulli polynomials. These expansions naturally express many of the well-known properties of these functions. As corollaries many special values of these transcendental functions are expressed as series of higher order Bernoulli numbers. For a video summary of this paper, please click here or visit http://youtu.be/2i5PQiueW_8 . Author Video Watch what authors say about their articles

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.