Abstract
AbstractIn this paper we analyze the stability of the problem of performing a rational QZ step with a shift that is an eigenvalue of a given regular pencil $$H-\lambda K$$ H - λ K in unreduced Hessenberg–Hessenberg form. In exact arithmetic, the backward rational QZ step moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained in Hessenberg–Hessenberg form, which then yields a deflation of the given shift. But in finite-precision the rational QZ step gets “blurred” and precludes the deflation of the given shift at the top of the pencil. In this paper we show that when we first compute the corresponding eigenvector to sufficient accuracy, then the rational QZ step can be constructed using this eigenvector, so that the exact deflation is also obtained in finite-precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.