Abstract

In this study, a virtual screening approach based on pharmacophore and molecular docking was proposed to identify endothelin converting enzyme-1 (ECE-1) (EC 3.4.24.71) inhibitors from Salvia miltiorrhiza. First, the pharmacophore models were generated to recognize the common features of the ECE-1 inhibitors. The models were validated by a test database composed by a set of compounds known as ECE-1 inhibitors and nonactive compounds and proven to be successful in discriminating active and inactive inhibitors. Then, the best pharmacophore model was used to screen the compounds from S. miltiorrhiza. Furthermore, the Surflex-Dock procedure was used for molecular docking. All compounds from S. miltiorrhiza were docked into the active site of the target protein. An empirical scoring function was used to evaluate the affinity of the compounds and the target protein. Comparing the virtual screening results based on pharmacophore and molecular docking, respectively, 11 communal compounds with higher QFIT and docking score were hit, and the activity of some compounds was validated in the literature. The binding modes between these compounds and the ECE-1 binding site were predicted and used to identify the key interactions that contribute to the inhibitory activity of ECE-1 activity. The results show that the two methods have good consistency and can be validated and supplemented with each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call