Abstract

We define a class of stochastic processes, denoted as marked rational arrival processes (MRAPs), which is an extension of matrix exponential distributions and rational arrival processes. Continuous-time Markov processes with labeled transitions are a subclass of this more general model class. New equivalence relations between processes are defined, and it is shown that these equivalence relations are natural extensions of strong and weak lumpability and the corresponding bisimulation relations that have been defined for Markov processes. If a general rational process is equivalent to a Markov process, it can be used in numerical analysis techniques instead of the Markov process. This observation allows one to apply MRAPs like Markov processes and since the new equivalence relations are more general than lumpability and bisimulation, it is sometimes possible to find smaller representations of given processes. Finally, we show that the equivalence is preserved by the composition of MRAPs and can therefore be exploited in compositional modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.