Abstract
We study rational points on conic bundles over elliptic curves with positive rank over a number field. We show that the étale Brauer–Manin obstruction is insufficient to explain failures of the Hasse principle for such varieties. We then further consider properties of the distribution of the set of rational points with respect to its image in the rational points of the elliptic curve. In the process, we prove results on a local-to-global principle for torsion points on elliptic curves over \({{{\mathbb {Q}}}}\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.