Abstract
Etant donné un corps parfait k et une clôture algébrique k ¯ de k, les espaces de modules de k ¯-représentations semistables d’un carquois Q sont des k-variétés algébriques dont nous étudions ici les propriétés arithmétiques, en particulier les points rationnels et leur interprétation modulaire. Outre les représentations à coefficients dans k, apparaissent naturellement certaines représentations rationnelles dites tordues, à coefficients dans une algèbre à division définie sur k et qui donnent lieu à différentes k-formes de la variété des modules initiale. En guise d’application, on montre qu’une k ¯-représentation stable du carquois Q est définissable sur une algèbre à division centrale bien précise, elle-même définie sur le corps des modules de la représentation considérée.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.