Abstract

AbstractLet C be a hyperelliptic curve given by the equation y2 = f(x) for f ∈ ℤ[x] without multiple roots. We say that points Pi = (xi, yi) ∈ C(ℚ) for i = 1, 2, … , m are in arithmetic progression if the numbers xi for i = 1, 2, … , m are in arithmetic progression.In this paper we show that there exists a polynomial k ∈ ℤ[t] with the property that on the elliptic curve ε′ : y2 = x3+k(t) (defined over the field ℚ(t)) we can find four points in arithmetic progression that are independent in the group of all ℚ(t)-rational points on the curve Ε′. In particular this result generalizes earlier results of Lee and Vélez. We also show that if n ∈ ℕ is odd, then there are infinitely many k's with the property that on curves y2 = xn + k there are four rational points in arithmetic progressions. In the case when n is even we can find infinitely many k's such that on curves y2 = xn +k there are six rational points in arithmetic progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call