Abstract

Lacto-N-neotetraose (LNnT), as a neutral core structure within human milk oligosaccharides (HMOs), has garnered widespread attention due to its exceptional physiological functions. In the process of LNnT synthesis using cellular factory approaches, substrate promiscuity of glycosyltransferases leads to the production of longer oligosaccharide derivatives. Here, rational modification of β1,3-N-acetylglucosaminyltransferase from Neisseria meningitidis (LgtA) effectively decreased the concentration of long-chain LNnT derivatives. Specifically, the optimal β1,4-galactosyltransferase (β1,4-GalT) was selected from seven known candidates, enabling the efficient synthesis of LNnT in Escherichia coli BL21(DE3). Furthermore, the influence of lactose concentration on the distribution patterns of LNnT and its longer derivatives was investigated. The modification of LgtA was conducted with computational assistance, involving alanine scanning based on molecular docking to identify the substrate binding pocket and implementing large steric hindrance on crucial amino acids to obstruct LNnT entry. The implementation of saturation mutagenesis at positions 223 and 228 of LgtA yielded advantageous mutant variants that did not affect LNnT synthesis while significantly reducing the production of longer oligosaccharide derivatives. The most effective mutant, N223I, reduced the molar ratio of long derivatives by nearly 70%, showcasing promising prospects for LNnT production with diminished byproducts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.