Abstract
A comprehensive study on the engineering of titanium dioxide-functionalized nanoporous anodic alumina distributed Bragg reflectors (TiO2–NAA-DBRs) for photocatalysis enhanced by the “slow photon” effect is presented. The photocatalytic performance of these composite photonic crystals (PCs) is assessed by monitoring photodegradation of a variety of organic molecules with absorbance bands across the spectral regions. This study demonstrates that photocatalytic performance of TiO2–NAA-DBRs is enhanced by the “slow photon” effect when the edges of the PC’s photonic stopband (PSB) fall within the absorbance band of the organic molecules. The photocatalytic performance is significantly enhanced when the PSB’s red edge is in close proximity to the absorbance band of the organic molecules. Overall photocatalytic degradation is also dependent on the total pore length of the PC structure, charge of the organic molecules, percentage of vis–near-IR irradiation, and matrix complexity (i.e., interfering ions and molecu...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.