Abstract

The rational Krylov algorithm computes eigenvalues and eigenvectors of a regular not necessarily symmetric matrix pencil. It is a generalization of the shifted and inverted Arnoldi algorithm, where several factorizations with different shifts are used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the Hessenberg pencil approximates the solution of the original pencil. Different types of Ritz values and harmonic Ritz values are described and compared. Periodical purging of uninteresting directions reduces the size of the basis and makes it possible to compute many linearly independent eigenvectors and principal vectors of pencils with multiple eigenvalues. Relations to iterative methods are established. Results are reported for two large test examples. One is a symmetric pencil coming from a finite element approximation of a membrane; the other is a nonsymmetric matrix modeling an idealized aircraft stability problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.