Abstract

The well known isomorphism relating the rational algebraic K-theory groups and the rational motivic cohomology groups of a smooth variety over a field of characteristic 0 is shown to be realized by a map (the “Segre map”) of infinite loop spaces. Moreover, the associated Chern character map on rational homotopy groups is shown to be a ring isomorphism. A technique is introduced that establishes a useful general criterion for a natural transformation of functors on quasi-projective complex varieties to induce a homotopy equivalence of semi-topological singular complexes. Since semi-topological K-theory and morphic cohomology can be formulated as the semi-topological singular complexes associated to algebraic K-theory and motivic cohomology, this criterion provides a rational isomorphism between the semi-topological K-theory groups and the morphic cohomology groups of a smooth complex variety. Consequences include a Riemann-Roch theorem for the Chern character on semi-topological K-theory and an interpretation of the “topological filtration” on singular cohomology groups in K-theoretic terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.