Abstract

An involution refers to a function that acts as its own inverse. In this paper, our focus lies on exploring two-dimensional involutive maps defined by rational functions. These functions have denominators represented by polynomials of degree one and numerators by polynomials of a degree of, at most, two, depending on parameters. We identify the sets in the parameter space of the maps that correspond to involutions. The investigation relies on leveraging algorithms from computational commutative algebra based on the Groebner basis theory. To expedite the computations, we employ modular arithmetic. Furthermore, we showcase how involution can serve as a valuable tool for identifying reversible and integrable systems within families of planar polynomial ordinary differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.