Abstract
The family of Euclidean triangles having some fixed perimeter and area can be identified with a subset of points on a nonsingular cubic plane curve, i.e., an elliptic curve; furthermore, if the perimeter and the square of the area are rational, then the curve has rational coordinates and those triangles with rational side lengths correspond to rational points on the curve. We first recall this connection, and then we develop hyperbolic analogs. There are interesting relationships between the arithmetic on the elliptic curve (rank and torsion) and the family of triangles living on it. In the hyperbolic setting, the analogous plane curve is a quartic with two singularities at infinity, so the genus is still 1. We can add points geometrically by realizing the quartic as the intersection of two quadric surfaces. This allows us to construct nontrivial examples of rational hyperbolic triangles having the same inradius and perimeter as a given rational right hyperbolic triangle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.