Abstract
Abstract Arone and the second author showed that when the dimensions are in the stable range, the rational homology and homotopy of the high-dimensional analogues of spaces of long knots can be calculated as the homology of a direct sum of finite graph-complexes that they described explicitly. They also showed that these homology and homotopy groups can be interpreted as the higher-order Hochschild homology, also called Hochschild–Pirashvili homology. In this paper, we generalize all these results to high-dimensional analogues of spaces of string links. The methods of our paper are applicable in the range when the ambient dimension is at least twice the maximal dimension of a link component plus two, which in particular guarantees that the spaces under study are connected. However, we conjecture that our homotopy graph-complex computes the rational homotopy groups of link spaces always when the codimension is greater than two, i.e. always when the Goodwillie–Weiss calculus is applicable. Using Haefliger’s approach to calculate the groups of isotopy classes of higher-dimensional links, we confirm our conjecture at the level of π 0 {\pi_{0}} .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.