Abstract

We give a necessary and sufficient condition for an algebraic ODE to have a rational type general solution. For an autonomous first order ODE, we give an algorithm to compute a rational general solution if it exists. The algorithm is based on the relation between rational solutions of the first order ODE and rational parametrizations of the plane algebraic curve defined by the first order ODE and Pade approximants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.