Abstract

Nonlinearity in power amplifiers and In-phase and Quadrature phase (I/Q) imperfections degrade the performance of direct conversion transmitters. In this letter, a novel rational function based model is proposed to jointly alleviate both these impairments. The performance of the model is evaluated in terms of Normalized mean square error (NMSE) and Adjacent channel error power ratio (ACEPR). Simulation results and measurements show that the model has an improvement of around 2 dB NMSE and around 3 dB in ACEPR than the state of the art parallel Hammerstein based model . Also the model attains a lower complexity while maintaining almost same performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.