Abstract

Supercapacitors (SCs) are widely recognized as competitive power sources for energy storage. The hierarchical structure of nickel vanadium sulfide nanoparticles encapsulated on graphene nanosheets (NVS/G) was fabricated using a cost-effective and scalable solvothermal process. The reaction contents of the composites were explored and optimized. TEM images displayed the nickel vanadium sulfide nanoparticles (NVS NPs) with 20-30 nm average size anchored to graphene nanosheets. The interconnection of graphene nanosheets encapsulating NVS nanoparticles effectively reduces the ion diffusion path between the electrode and electrolyte, thereby enhancing electrochemical performance. The NVS/G composite demonstrated improved electrochemical performance, achieving a maximum of 1437 F g-1 specific capacitance at 1 A g-1, remarkable rate capability retaining of 1050 F g-1 at 20 A g-1, and exceptional cycle stability with 91.2% capacitance retention following 10,000 cycles. The NVS/G composite was employed as a cathode, and reduced graphene oxide (rGO) was used as an anode material to assemble a device. Importantly, asymmetric SCs using NVS/G//rGO achieved 74.7 W h kg-1 energy density at 0.8 kW kg-1 power density, along with outstanding stability with 88.2% capacitance retention following 10,000 cycles. These superior properties of the NVS/G electrode highlight its significant potential in energy storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.